microRNA Archives - Episona
archive,tax-publication_tag,term-microrna,term-126,ajax_fade,page_not_loaded,,qode-child-theme-ver-1.0.0,qode-theme-ver-7.6.2,wpb-js-composer js-comp-ver-5.0.1,vc_responsive
Paternal long-term exercise programs offspring for low energy expenditure and increased risk for obesity in mice
Oct 2015 - FASEB J
Alexander K. Murashov, Elena S. Pak, Michael Koury, Ajay Ajmera, Maneesh Jeyakumar, Matthew Parker, Oksana Williams, Jian Ding, Dianne Walters, P. Darrell Neufer
Obesity has more than doubled in children and tripled in adolescents in the past 30 yr. The association between metabolic disorders in offspring of obese mothers with diabetes has long been known; however, a growing body of research indicates that fathers play a significant role through presently unknown mechanisms. Recent observations have shown that changes in paternal diet may result in transgenerational inheritance of the insulin-resistant phenotype. <!--more-->Although diet-induced epigenetic reprogramming via paternal lineage has recently received much attention in the literature, the effect of paternal physical activity on offspring metabolism has not been adequately addressed. In the current study, we investigated the effects of long-term voluntary wheel-running in C57BL/6J male mice on their offspring's predisposition to insulin resistance. Our observations revealed that fathers subjected to wheel-running for 12 wk produced offspring that were more susceptible to the adverse effects of a high-fat diet, manifested in increased body weight and adiposity, impaired glucose tolerance, and elevated insulin levels. Long-term paternal exercise also altered expression of several metabolic genes, including Ogt, Oga, Pdk4, H19, Glut4, and Ptpn1, in offspring skeletal muscle. Finally, prolonged exercise affected gene methylation patterns and micro-RNA content in the sperm of fathers, providing a potential mechanism for the transgenerational inheritance. These findings suggest that paternal exercise produces offspring with a thrifty phenotype, potentially via miRNA-induced modification of sperm.
Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress
Nov 2015 - PNAS
Ali B. Rodgers, Christopher P. Morgan, N. Adrian Leu, and Tracy L. Bale
Epigenetic signatures in germ cells, capable of both responding to the parental environment and shaping offspring neurodevelopment, are uniquely positioned to mediate transgenerational outcomes. However, molecular mechanisms by which these marks may communicate experience-dependent information across generations are currently unknown. In our model of chronic paternal stress, we previously identified nine microRNAs (miRs) that were increased in the sperm of stressed sires and associated with reduced hypothalamic-pituitary-adrenal (HPA) stress axis reactivity in offspring. <!--more-->In the current study, we rigorously examine the hypothesis that these sperm miRs function postfertilization to alter offspring stress responsivity and, using zygote microinjection of the nine specific miRs, demonstrated a remarkable recapitulation of the offspring stress dysregulation phenotype. Further, we associated long-term reprogramming of the hypothalamic transcriptome with HPA axis dysfunction, noting a marked decreased in the expression of extracellular matrix and collagen gene sets that may reflect an underlying change in blood-brain barrier permeability. We conclude by investigating the developmental impact of sperm miRs in early zygotes with single-cell amplification technology, identifying the targeted degradation of stored maternal mRNA transcripts including sirtuin 1 and ubiquitin protein ligase E3a, two genes with established function in chromatin remodeling, and this potent regulatory function of miRs postfertilization likely initiates a cascade of molecular events that eventually alters stress reactivity. Overall, these findings demonstrate a clear mechanistic role for sperm miRs in the transgenerational transmission of paternal lifetime experiences.