transgenerational Archives - Episona
135
archive,tax-publication_tag,term-transgenerational,term-135,ajax_fade,page_not_loaded,,qode-child-theme-ver-1.0.0,qode-theme-ver-7.6.2,wpb-js-composer js-comp-ver-5.0.1,vc_responsive
Paternal Psychological Stress Reprograms Hepatic Gluconeogenesis in Offspring
Feb 2016 | Cell Metabolism
Ling Wu, Yan Lu, Yang Jiao, Bin Liu, Shangang Li, Yao Li, Fengying Xing, Dongbao Chen, Xing Liu, Jiejie Zhao, Xuelian Xiong, Yanyun Gu, Jieli Lu, Xuejin Chen, and Xiaoying Li
Both epidemiologic and experimental animal studies demonstrate that chronic psychological stress exerts adverse effects on the initiation and/or progression of many diseases. However, intergenerational effects of this environmental information remains poorly understood. Here, using a C57BL/6 mouse model of restraint stress, we show that offspring of stressed fathers exhibit hyperglycemia due to enhanced hepatic gluconeogenesis and elevated expression of PEPCK. <!--more-->Mechanistically, we identify an epigenetic alteration at the promoter region of the Sfmbt2 gene, a maternally imprinted polycomb gene, leading to a downregulation of intronic microRNA-466b-3p, which post-transcriptionally inhibits PEPCK expression. Importantly, hyperglycemia in F1 mice is reversed by RU486 treatment in fathers, and dexamethasone administration in F0 mice phenocopies the roles of restraint stress. Thus, we provide evidence showing the effects of paternal psychological stress on the regulation of glucose metabolism in offspring, which may have profound implications for our understanding of health and disease risk inherited from fathers.
Disruption of histone methylation in developing sperm impairs offspring health transgenerationally
Nov 2015 - Science
Keith Siklenka, Serap Erkek, Maren Godmann, Romain Lambrot, Serge McGraw, Christine Lafleur, Tamara Cohen, Jianguo Xia, Matthew Suderman, Michael Hallett, Jacquetta Trasler, Antoine H. F. M. Peters, Sarah Kimmins
A father's lifetime experiences can be transmitted to his offspring to affect health and development. However, the mechanisms underlying paternal epigenetic transmission are unclear. Unlike in somatic cells, there are few nucleosomes in sperm, and their function in epigenetic inheritance is unknown. <!--more-->We generated transgenic mice in which overexpression of the histone H3 lysine 4 (H3K4) demethylase KDM1A (also known as LSD1) during spermatogenesis reduced H3K4 dimethylation in sperm. KDM1A overexpression in one generation severely impaired development and survivability of offspring. These defects persisted transgenerationally in the absence of KDM1A germline expression and were associated with altered RNA profiles in sperm and offspring. We show that epigenetic inheritance of aberrant development can be initiated by histone demethylase activity in developing sperm, without changes to DNA methylation at CpG-rich regions.
Effects of increased paternal age on sperm quality, reproductive outcome and associated epigenetic risks to offspring
Apr 2015 - Reprod Biol Endocrinol
Rakesh Sharma, Ashok Agarwal, Vikram K Rohra, Mourad Assidi, Muhammad Abu-Elmagd, Rola F Turki
Over the last decade, there has been a significant increase in average paternal age when the first child is conceived, either due to increased life expectancy, widespread use of contraception, late marriages and other factors. While the effect of maternal ageing on fertilization and reproduction is well known and several studies have shown that women over 35 years have a higher risk of infertility, pregnancy complications, spontaneous abortion, congenital anomalies, and perinatal complications. The effect of paternal age on semen quality and reproductive function is controversial for several reasons. <!--more-->First, there is no universal definition for advanced paternal ageing. Secondly, the literature is full of studies with conflicting results, especially for the most common parameters tested. Advancing paternal age also has been associated with increased risk of genetic disease. Our exhaustive literature review has demonstrated negative effects on sperm quality and testicular functions with increasing paternal age. Epigenetics changes, DNA mutations along with chromosomal aneuploidies have been associated with increasing paternal age. In addition to increased risk of male infertility, paternal age has also been demonstrated to impact reproductive and fertility outcomes including a decrease in IVF/ICSI success rate and increasing rate of preterm birth. Increasing paternal age has shown to increase the incidence of different types of disorders like autism, schizophrenia, bipolar disorders, and childhood leukemia in the progeny. It is thereby essential to educate the infertile couples on the disturbing links between increased paternal age and rising disorders in their offspring, to better counsel them during their reproductive years.
Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health
Nov 2015 - Clin Epigenetics
Liborio Stuppia, Marica Franzago, Patrizia Ballerini, Valentina Gatta, Ivana Antonucci
The correlation between epigenetics and human reproduction represents a very interesting field of study, mainly due to the possible transgenerational effects related to epigenetic modifications of male and female gametes. In the present review, we focused our attention to the role played by epigenetics on male reproduction, evidencing at least four different levels at which sperm epigenetic modifications could affect reproduction: (1) spermatogenesis failure; (2) embryo development; (3) outcome of assisted reproduction technique (ART) protocols, mainly as concerning genomic imprinting; and (4) long-term effects during the offspring lifetime. <!--more-->The environmental agents responsible for epigenetic modifications are also examined, suggesting that the control of paternal lifestyle prior to conception could represent in the next future a novel hot topic in the management of human reproduction.
Paternal long-term exercise programs offspring for low energy expenditure and increased risk for obesity in mice
Oct 2015 - FASEB J
Alexander K. Murashov, Elena S. Pak, Michael Koury, Ajay Ajmera, Maneesh Jeyakumar, Matthew Parker, Oksana Williams, Jian Ding, Dianne Walters, P. Darrell Neufer
Obesity has more than doubled in children and tripled in adolescents in the past 30 yr. The association between metabolic disorders in offspring of obese mothers with diabetes has long been known; however, a growing body of research indicates that fathers play a significant role through presently unknown mechanisms. Recent observations have shown that changes in paternal diet may result in transgenerational inheritance of the insulin-resistant phenotype. <!--more-->Although diet-induced epigenetic reprogramming via paternal lineage has recently received much attention in the literature, the effect of paternal physical activity on offspring metabolism has not been adequately addressed. In the current study, we investigated the effects of long-term voluntary wheel-running in C57BL/6J male mice on their offspring's predisposition to insulin resistance. Our observations revealed that fathers subjected to wheel-running for 12 wk produced offspring that were more susceptible to the adverse effects of a high-fat diet, manifested in increased body weight and adiposity, impaired glucose tolerance, and elevated insulin levels. Long-term paternal exercise also altered expression of several metabolic genes, including Ogt, Oga, Pdk4, H19, Glut4, and Ptpn1, in offspring skeletal muscle. Finally, prolonged exercise affected gene methylation patterns and micro-RNA content in the sperm of fathers, providing a potential mechanism for the transgenerational inheritance. These findings suggest that paternal exercise produces offspring with a thrifty phenotype, potentially via miRNA-induced modification of sperm.